Improving chemical similarity ensemble approach in target prediction

نویسندگان

  • Zhonghua Wang
  • Lu Liang
  • Zheng Yin
  • Jianping Lin
چکیده

BACKGROUND In silico target prediction of compounds plays an important role in drug discovery. The chemical similarity ensemble approach (SEA) is a promising method, which has been successfully applied in many drug-related studies. There are various models available analogous to SEA, because this approach is based on different types of molecular fingerprints. To investigate the influence of training data selection and the complementarity of different models, several SEA models were constructed and tested. RESULTS When we used a test set of 37,138 positive and 42,928 negative ligand-target interactions, among the five tested molecular fingerprint methods, at significance level 0.05, Topological-based model yielded the best precision rate (83.7 %) and [Formula: see text] (0.784) while Atom pair-based model yielded the best [Formula: see text] (0.694). By employing an election system to combine the five models, a flexible prediction scheme was achieved with precision range from 71 to 90.6 %, [Formula: see text] range from 0.663 to 0.684 and [Formula: see text] range from 0.696 to 0.817. CONCLUSIONS The overall effectiveness of all of the five models could be ranked in decreasing order as follows: Atom pair [Formula: see text] Topological > Morgan > MACCS > Pharmacophore. Combining multiple SEA models, which takes advantages of different models, could be used to improve the success rates of the models. Another possibility of improving the model could be using target-specific classes or more active compounds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised prediction of drug-target interactions by ensemble learning

Drug-target interaction (DTI) provides novel insights about the genomic drug discovery. The wet experiments of identifying DTIs are time-consuming and costly. Recently, the increase of available data provides the opportunity to the development of computational methods. Although many computational methods have been proposed (such as classification-based methods, graph-based methods and network-b...

متن کامل

Computational methods for prediction of in vitro effects of new chemical structures

BACKGROUND With a constant increase in the number of new chemicals synthesized every year, it becomes important to employ the most reliable and fast in silico screening methods to predict their safety and activity profiles. In recent years, in silico prediction methods received great attention in an attempt to reduce animal experiments for the evaluation of various toxicological endpoints, comp...

متن کامل

DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank

MOTIVATION Identifying drug-target interactions is an important task in drug discovery. To reduce heavy time and financial cost in experimental way, many computational approaches have been proposed. Although these approaches have used many different principles, their performance is far from satisfactory, especially in predicting drug-target interactions of new candidate drugs or targets. METH...

متن کامل

Quantifying the Relationships among Drug Classes

The similarity of drug targets is typically measured using sequence or structural information. Here, we consider chemo-centric approaches that measure target similarity on the basis of their ligands, asking how chemoinformatics similarities differ from those derived bioinformatically, how stable the ligand networks are to changes in chemoinformatics metrics, and which network is the most reliab...

متن کامل

General Purpose 2D and 3D Similarity Approach to Identify hERG Blockers

Screening compounds for human ether-à-go-go-related gene (hERG) channel inhibition is an important component of early stage drug development and assessment. In this study, we developed a high-confidence (p-value < 0.01) hERG prediction model based on a combined two-dimensional (2D) and three-dimensional (3D) modeling approach. We developed a 3D similarity conformation approach (SCA) based on ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cheminformatics

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016